The Company and the Geothermal Applications
Geothermal

ORC technology is particularly suitable for the exploitation of medium to low enthalpy sources. Cost-effective solution with power output up to 15 MW\(_e\) and water temperature above 100°C*.

* 212 °F
Binary Plant Schematic

No standard heat/cooling sources → highly customized solutions
Layout – Some Examples

TURBODEN 7 layout

TURBODEN 10 layout

Geothermal 5 MW Air-cooled

Geothermal 5 MW water-cooled
Tailor-made Solutions

- Hot water resource between 100°C and 200°C (212 – 392°F)
- Brine and steam bottoming cycles to flash steam plants
- Unit size up to 15 MW\textsubscript{el}
- Scalable for larger plants
- High cycle efficiency
- Enhanced cycle efficiency with two-level cycles
- Low O&M requirements
- Option to select non-flammable working fluids
- Typical delivery time (EXW): 11-13 months
Geothermal ORC Design

Main issues to consider

- Corrosion → special and costly materials for the heat exchangers
great influence on the cost of the unit
longer delivery period

- Scaling → limits in cooling the geothermal brine

- Fouling → removable covers and straight cleanable tubes

- Working fluid flammability: critical in urban areas & for insurance cost

- Cascade use / cogeneration: schemes, feasibility

- Vapor plume and need for makeup water in case of evaporative devices

- Larger footprint and noise emissions from the fans in case of air cooling
Evaluation of the proper Cooling System: wet Vs dry

AVAILABLE

Evaporative towers
- Smaller footprint
- Efficient in hot dry climate
- Higher own-consumption
- Fresh water consumption
- Chemical water treatment → operation cost, environment

MAKE UP WATER

Air condensers
- Larger footprint
- Efficient in cold climate
- Lower own consumption
- No water needed
- Virtually no environmental impact and operating costs

NOT AVAILABLE

Critical issues
- Investment costs: initial / overall
- Generated yearly output, linked to gross power and parasitic loads
Working fluid selection is influenced by many factors

Cost
Enthalpy drop & flow rate
Pressure levels
Environmental friendliness
Heat input curve
Cooling system
Flammability

Option to select a non flammable fluid

- Fluid flammability is critical in urban areas & for insurance costs
- Turboden identified and studied a number of fluids
- Turboden tested a non flammable fluid in Altheim, being used ever since
- Lab tests under way to check compatibility & behavior in wider range
- Possibility to place the unit inside a building or shelter (protection from atmospheric agents and mitigation of noise emissions)
Reference Plant - Sauerlach

Plant type: Two level cycle geothermal unit
Customer: SWM - StadtWerke München (public utilities company)
Site: Bavaria, Germany
Start-up: February 2013
Heat source: geothermal fluid at 140°C
Cooling device: air condensers
Total power: 5+ MW\textsubscript{el} plus 4 MW\textsubscript{th} decoupling for district heating
Working fluid: refrigerant 245fa (non flammable)
Reference Plant - Dürrnhaar

Customer: Hochtief Energy Management GmbH
Site: Dürrnhaar (München)
Start-up: December 2012
Heat source: geothermal fluid at 138°C
Total electric power: 5.6 MW
Scope of supply: EPC contract for the complete ORC unit, including the Air Cooled Condenser and the geothermal balance of plant
Reference Plant - Kirchstockach

Customer: Hochtief Energy Management GmbH
Site: Kirchstockach (München)
Start-up: March 2013
Heat source: geothermal fluid at 138°C
Total electric power: 5.6 MW
Scope of supply: EPC contract for the complete ORC unit, including the Air Cooled Condenser and the geothermal balance of plant
Reference Plant - Traunreut

Customer: Geothermische Kraftwerksgeellschaft Traunreut mbH
Site: Traunreut (Bavaria)
Status: Under construction
Heat source: geothermal fluid at 118°C
Total electric power: 4.1 MW
Total thermal power: 12 MW (to the district heating)
Scope of supply: Supply of the complete ORC unit, including the Air Cooled Condenser and control system of geothermal site
Reference Plant - Enel Supercritical

Plant type: geothermal prototype with supercritical cycle
Customer: Enel Green Power
Site: Livorno, Italy
Start-up: March 2012
Heat source: hot water at 150°C nominal
Cooling device: ‘dry & spray’ condenser
Total electric power: 500 kW
Working fluid: refrigerant (non flammable)
Reference Plant - Mirom

Plant type: heat recovery from pressurized water boiler in waste incinerator

Customer: MIROM, Spie Belgium SA

Site: Roeselare, Belgium

Start-up: April 2008

Availability: > 98%

Heat source: hot water at 180°C (return at 140°C)

Cooling source: water/air

Total electric power: 3 MW

Net electric efficiency: 16.5%

Non-flammable working fluid: to meet customer’s requirement
Early Demonstration Projects

Site: Kapisha, Zambia
Year: 1988
Heat source: Geothermal fluid at 88°C
Total electric power: 2 x 100 kW

Plant type: geothermal – experimental for Enel
Site: Castelnuovo di Val di Cecina, Italy
Year: 1992
Heat source: Geothermal fluid at 114°C (return at 102°C)
Cooling source: water/air
Total electric power: 1.3 MW
Net electric efficiency: 9%
EU Funded Demonstration Projects

Plant type: geothermal low enthalpy, coupled with a geothermal district heating system
Site: Marktgemeinde, Altheim, Austria
Start-up: March 2001
Heat source: hot water at 106°C
Cooling source: cold water from a nearby river (cooling temperature 10/18°C)
Design electric power: 1 MW (normally operated by the owner at ~ 500 kW)

Plant type: geothermal, 1st EU operating plant on EGS (Enhanced Geothermal System)
Site: Soultz-sous-Forêts, Alsace, France
Start-up: June 2008
Heat source: hot water at 180°C
Cooling source: air
Total electric power: 1.5 MW
Net electric efficiency: 11.5%

Plant type: geothermal low enthalpy, coupled with a geothermal district heating system
Site: Simbach – Braunau, German-Austrian border
Start-up: August 2009
Cooling source: air/water
Design electric power: 200 kW
Turboden strong points

R&D
- Participation in national & EU research programs
- Cooperation with EU Universities and Research Centres
- Thermodynamic cycle optimization
- Working fluid selection & testing
- Thermo-fluid-dynamic design and validation
- Implementation & testing of control/supervision software
- Many patents obtained

Sales/marketing
- Pre-feasibility studies: evaluation of technical & economical feasibility of ORC power plants
- Customized proposals to maximize economic & environmental targets

Design
- Complete in-house mechanical design
- Proprietary design and own manufacturing of ORC optimized turbine
- Tools
 - Thermo-fluid-dynamic programs
 - FEA
 - 3D CAD-CAM
 - Vibration analysis

Operations & manufacturing
- Outsourced components from highly qualified suppliers
- Quality assurance & project management
- In-house skid mounting to minimize site activities

Aftermarket service
- Start-up and commissioning
- Maintenance, technical assistance to operation and spare parts service
- Remote monitoring & optimization of plant operation

EPC capability *
Full Power Plant EPC
Single point responsibility
Mitsubishi Heavy Industries is one of the world's leading heavy machinery manufacturers, with consolidated sales of over $32 billion (in fiscal 2013).

Foundation July 7, 1884